publications

* these authors contributed equally

2025

  1. Predicting T Cell Receptor Specificity with Graph Attention Networks
    Aiwu Xu, Dhritiben Patel, Wenjun Lin, and Ping Luo
    In 12th International Work-Conference on Bioinformatics and Biomedical Engineering, 2025
  2. Creation of Visualizations with a Multi-Agent LLM Approach
    Ping Luo, Kyle Gauthier, Bo Huang, and Wenjun Lin
    In 10th International Congress on Information and Communication Technology, 2025

2024

  1. Early cancer derection in Li-Fraumeni Syndrome with cell-free DNA
    Derek Wong*, Ping Luo*, Leslie Oldfield, Haifan Gong, Ledia Brunga, and  others
    Cancer Discovery, 2024

2023

  1. Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma
    David G Coffey, Francesco Maura, Edgar Gonzalez-Kozlova, J Javier Diaz-Mejia, Ping Luo, Yong Zhang, Yuexin Xu, Edus H Warren, Travis Dawson, Brian Lee, and  others
    Nature communications, 2023
  2. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets
    Erik Christensen*, Ping Luo*, Andrei Turinsky, Mia Husić, Alaina Mahalanabis, Alaine Naidas, Juan Javier Diaz-Mejia, Michael Brudno, Trevor Pugh, Arun Ramani, and  others
    Briefings in Bioinformatics, 2023
  3. Integrated, longitudinal analysis of cell-free DNA in uveal melanoma
    Derek Wong, Ping Luo, Nadia Znassi, Diana P Arteaga, Diana Gray, Arnavaz Danesh, Ming Han, Eric Y Zhao, Stephanie Pedersen, Stephenie Prokopec, and  others
    Cancer Research Communications, 2023

2022

  1. Integrated analysis of cell-free DNA for the early detection of cancer in people with Li-Fraumeni Syndrome
    Derek Wong*, Ping Luo*, Leslie Oldfield, Haifan Gong, Ledia Brunga, Ron Rabinowicz, Vallijah Subasri, Clarissa Chan, Tiana Downs, Kirsten M Farncombe, and  others
    medRxiv, 2022
  2. Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Alaina Mahalanabis, Andrei L Turinsky, Mia Husić, Erik Christensen, Ping Luo, Alaine Naidas, Michael Brudno, Trevor Pugh, Arun K Ramani, and Parisa Shooshtari
    Computational and Structural Biotechnology Journal, 2022

2021

  1. Predicting disease-associated genes: Computational methods, databases, and evaluations
    Ping Luo, Bolin Chen, Bo Liao, and Fang-Xiang Wu
    Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021
  2. Identifying cell types from single-cell data based on similarities and dissimilarities between cells
    Yuanyuan Li, Ping Luo, Yi Lu, and Fang-Xiang Wu
    BMC bioinformatics, 2021

2020

  1. Ensemble disease gene prediction by clinical sample-based networks
    Ping Luo, Li-Ping Tian, Bolin Chen, Qianghua Xiao, and Fang-Xiang Wu
    BMC bioinformatics, 2020
  2. Crescent: cancer single cell expression toolkit
    Suluxan Mohanraj, J Javier Dı́az-Mejı́a, Martin D Pham, Hillary Elrick, Mia Husić, Shaikh Rashid, Ping Luo, Prabnur Bal, Kevin Lu, Samarth Patel, and  others
    Nucleic Acids Research, 2020

2019

  1. deepDriver: predicting cancer driver genes based on somatic mutations using deep convolutional neural networks
    Ping Luo, Yulian Ding, Xiujuan Lei, and Fang-Xiang Wu
    Frontiers in genetics, 2019
  2. A novel core-attachment–based method to identify dynamic protein complexes based on gene expression profiles and PPI networks
    Qianghua Xiao, Ping Luo, Min Li, Jianxin Wang, and Fang-Xiang Wu
    Proteomics, 2019
  3. Enhancing the prediction of disease–gene associations with multimodal deep learning
    Ping Luo, Yuanyuan Li, Li-Ping Tian, and Fang-Xiang Wu
    Bioinformatics, 2019
  4. Identifying disease-gene associations with graph-regularized manifold learning
    Ping Luo, Qianghua Xiao, Pi-Jing Wei, Bo Liao, and Fang-Xiang Wu
    Frontiers in genetics, 2019
  5. Improved spectral clustering method for identifying cell types from single-cell data
    Yuanyuan Li, Ping Luo, Yi Lu, and Fang-Xiang Wu
    In Intelligent Computing Theories and Application: 15th International Conference, ICIC 2019, Nanchang, China, August 3–6, 2019, Proceedings, Part II 15, 2019
  6. Identifying disease-associated genes based on artificial intelligence
    Ping Luo, and  others
    University of Saskatchewan, 2019

2018

  1. CASNMF: a converged algorithm for symmetrical nonnegative matrix factorization
    Li-Ping Tian*, Ping Luo*, Haiying Wang, Huiru Zheng, and Fang-Xiang Wu
    Neurocomputing, 2018
  2. Predicting gene-disease associations with manifold learning
    Ping Luo, Li-Ping Tian, Bolin Chen, Qianghua Xiao, and Fang-Xiang Wu
    In Bioinformatics Research and Applications: 14th International Symposium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings 14, 2018
  3. Predicting disease genes from clinical single sample-based PPI networks
    Ping Luo, Li-Ping Tian, Bolin Chen, Qianghua Xiao, and Fang-Xiang Wu
    In Bioinformatics and Biomedical Engineering: 6th International Work-Conference, IWBBIO 2018, Granada, Spain, April 25–27, 2018, Proceedings, Part I 6, 2018

2017

  1. Disease gene prediction by integrating PPI networks, clinical RNA-seq data and OMIM data
    Ping Luo, Li-Ping Tian, Jishou Ruan, and Fang-Xiang Wu
    IEEE/ACM transactions on computational biology and bioinformatics, 2017